Sex and gender analysis improves science and engineering

AbstractThe goal of sex and gender analysis is to promote rigorous, reproducible and responsible science. Incorporating sex and gender analysis into experimental design has enabled advancements across many disciplines, such as improved treatment of heart disease and insights into the societal impact of algorithmic bias. Here we discuss the potential for sex and gender analysis…

Abstract

The goal of sex and gender analysis is to promote rigorous, reproducible and responsible science. Incorporating sex and gender analysis into experimental design has enabled advancements across many disciplines, such as improved treatment of heart disease and insights into the societal impact of algorithmic bias. Here we discuss the potential for sex and gender analysis to foster scientific discovery, improve experimental efficiency and enable social equality. We provide a roadmap for sex and gender analysis across scientific disciplines and call on researchers, funding agencies, peer-reviewed journals and universities to coordinate efforts to implement robust methods of sex and gender analysis.

Access options

Subscribe to Journal

Get full journal access for 1 year

£198.00

only £3.88 per issue

All prices include VAT for United Kingdom.

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Conforti, F. et al. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol. 19, 737–746 (2018).

  2. 2.

    Buolamwini, J. & Gebru, T. Gender shades: intersectional accuracy disparities in commercial gender classification. Proc. Mach. Learn. Res. 81, 77–91 (2018).This paper demonstrates that commercial gender-identification algorithms misclassify darker-skinned females at a higher rate than the rest of the population, which is an example of how algorithmic bias intersects with gender and race.

  3. 3.

    Jensen, M. P. et al. Environmental warming and feminization of one of the largest sea turtle populations in the world. Curr. Biol. 28, 154–159 (2018).

  4. 4.

    Parker, L. M. et al. Ocean acidification but not warming alters sex determination in the Sydney rock oyster, Saccostrea glomerata. Proc. R. Soc. Lond. B 285, 20172869 (2018).

  5. 5.

    Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).

  6. 6.

    American Society of Cell Biology. Member survey on reproducibility. http://www.ascb.org/wp-content/uploads/2015/11/final-survey-results-without-Q11.pdf (2014).

  7. 7.

    Shah, K., McCormack, C. E. & Bradbury, N. A. Do you know the sex of your cells? Am. J. Physiol. Cell Physiol. 306, C3–C18 (2014). This review demonstrates that the sex of cells used in experiments can influence the biology of the cell and provides a table outlining the sex of cell lines that have appeared in Am. J. Physiol. Cell Physiol
    . in recent years.

  8. 8.

    Potluri, T., Engle, K., Fink, A. L., Vom Steeg, L. G. & Klein, S. L. Sex reporting in preclinical microbiological and immunological research. mBio 8, e01868-17 (2017).

  9. 9.

    Ellis, R. P. et al. Does sex really matter? Explaining intraspecies variation in ocean acidification responses. Biol. Lett. 13, 20160761 (2017).

  10. 10.

    Bahamonde, P. A., Feswick, A., Isaacs, M. A., Munkittrick, K. R. & Martyniuk, C. J. Defining the role of omics in assessing ecosystem health: perspectives from the Canadian environmental monitoring program. Environ. Toxicol. Chem. 35, 20–35 (2016).

  11. 11.

    Nomura, T. Robots and gender. Gend. Genome 1, 18–26 (2017). This paper presents an overview of research on the role of sex and gender in the context of human–robot interaction research and summarizes the cutting-edge research in this area from an engineering perspective.

  12. 12.

    Cripps, G., Flynn, K. J. & Lindeque, P. K. Ocean acidification affects the phyto-zoo plankton trophic transfer efficiency. PLoS ONE 11, e0151739 (2016). This paper discusses how sex analysis reveals significant effects of ocean acidification on the respiration rate in marine copepods, with males and females showing differential baseline respiration rates and responding to increased levels of CO
    2in opposing directions.

  13. 13.

    Li, J., Ju, W. & Reeves, B. Touching a mechanical body: tactile contact with intimate parts of a humanoid robot is physiologically arousing. J. Hum. Robot Interact. 6, 118–130 (2017).

  14. 14.

    Suvilehto, J. T., Glerean, E., Dunbar, R. I. M., Hari, R. & Nummenmaa, L. Topography of social touching depends on emotional bonds between humans. Proc. Natl Acad. Sci. USA 112, 13811–13816 (2015).

  15. 15.

    Becker, J. B., Prendergast, B. J. & Liang, J. W. Female rats are not more variable than male rats: a meta-analysis of neuroscience studies. Biol. Sex Differ. 7, 34 (2016).

  16. 16.

    Prendergast, B. J., Onishi, K. G. & Zucker, I. Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 40, 1–5 (2014).

  17. 17.

    Itoh, Y. & Arnold, A. P. Are females more variable than males in gene expression? Meta-analysis of microarray datasets. Biol. Sex Differ. 6, 18 (2015).

  18. 18.

    Romanov, N. et al. Disentangling genetic and environmental effects on the proteotypes of individuals. Cell 177, 1308–1318 (2019).

  19. 19.

    Beery, A. K. Inclusion of females does not increase variability in rodent research studies. Curr. Opin. Behav. Sci. 23, 143–149 (2018).

  20. 20.

    Buch, T. et al. Benefits of a factorial design focusing on inclusion of female and male animals in one experiment. J. Mol. Med. 97, 871–877 (2019).

  21. 21.

    Miller, L. R. et al. Considering sex as a biological variable in preclinical research. FASEB J. 31, 29–34 (2017).

  22. 22.

    Maures, T. J. et al. Males shorten the life span of C. elegans hermaphrodites via secreted compounds. Science 343, 541–544 (2014).

  23. 23.

    Chapman, C. D., Benedict, C. & Schiöth, H. B. Experimenter gender and replicability in science. Sci. Adv. 4, e1701427 (2018).

  24. 24.

    Sorge, R. E. et al. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat. Methods 11, 629–632 (2014).

  25. 25.

    Nielsen, M. W., Andersen, J. P., Schiebinger, L. & Schneider, J. W. One and a half million medical papers reveal a link between author gender and attention to gender and sex analysis. Nat. Hum. Behav. 1, 791–796 (2017).

  26. 26.

    Sugimoto, C. R., Ahn, Y. Y., Smith, E., Macaluso, B. & Larivière, V. Factors affecting sex-related reporting in medical research: a cross-disciplinary bibliometric analysis. Lancet 393, 550–559 (2019).

  27. 27.

    Ainsworth, C. Sex redefined. Nature 518, 288–291 (2015).

  28. 28.

    Bachtrog, D. et al. Sex determination: why so many ways of doing it? PLoS Biol. 12, e1001899 (2014).

  29. 29.

    Ospina-Álvarez, N. & Piferrer, F. Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS ONE 3, e2837 (2008).

  30. 30.

    Munday, P. L., Buston, P. M. & Warner, R. R. Diversity and flexibility of sex-change strategies in animals. Trends Ecol. Evol. 21, 89–95 (2006).

  31. 31.

    Parker, K. A direct method for estimating northern anchovy, Engraulis mordax, spawning biomass. Fish Bull. 78, 541–544 (1980).

  32. 32.

    Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. J. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).

  33. 33.

    Shang, E. H. H., Yu, R. M. K. & Wu, R. S. S. Hypoxia affects sex differentiation and development, leading to a male-dominated population in zebrafish (Danio rerio). Environ. Sci. Technol. 40, 3118–3122 (2006).

  34. 34.

    Oldfield, R. G. Genetic, abiotic and social influences on sex differentiation and the evolution of sequential hermaphroditism. Fish Fish. 6, 93–110 (2005).

  35. 35.

    Kindsvater, H. K., Reynolds, J. D., Sadovy de Mitcheson, Y. & Mangel, M. Selectivity matters: rules of thumb for management of plate-sized, sex-changing fish in the live reef food fish trade. Fish Fish. 18, 821–836 (2017).

  36. 36.

    Benvenuto, C., Coscia, I., Chopelet, J., Sala-Bozano, M. & Mariani, S. Ecological and evolutionary consequences of alternative sex-change pathways in fish. Sci. Rep. 7, 9084 (2017). This paper demonstrates that the direction of sex change in sequentially hermaphroditic fish is a critical variable determining demographic stability and resilience, with considerable implications concerning the resilience of these populations to anthropogenic disturbances, such as overfishing.

  37. 37.

    Casas, L. et al. Sex change in clownfish: molecular insights from transcriptome analysis. Sci. Rep. 6, 35461 (2016).

  38. 38.

    Labonté, B. et al. Sex-specific transcriptional signatures in human depression. Nat. Med. 23, 1102–1111 (2017).

  39. 39.

    Sorge, R. E. et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 18, 1081–1083 (2015).

  40. 40.

    Tannenbaum, C. & Day, D. Age and sex in drug development and testing for adults. Pharmacol. Res. 121, 83–93 (2017).

  41. 41.

    Juul, K. V., Klein, B. M., Sandström, R., Erichsen, L. & Nørgaard, J. P. Gender difference in antidiuretic response to desmopressin. Am. J. Physiol. Renal Physiol. 300, F1116–F1122 (2011).

  42. 42.

    Giefing-Kröll, C., Berger, P., Lepperdinger, G. & Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 14, 309–321 (2015).

  43. 43.

    Gao, F. et al. XWAS: a software toolset for genetic data analysis and association studies of the X chromosome. J. Hered. 106, 666–671 (2015).

  44. 44.

    Wise, A. L., Gyi, L. & Manolio, T. A. Exclusion: toward integrating the X chromosome in genome-wide association analyses. Am. J. Hum. Genet. 92, 643–647 (2013).

  45. 45.

    Khramtsova, E. A., Davis, L. K. & Stranger, B. E. The role of sex in the genomics of human complex traits. Nat. Rev. Genet. 20, 173–190 (2019). This review discusses new techniques for sex analysis in genome-wide association studies, epigenetic studies and X-chromosome inactivation.

  46. 46.

    Schiebinger, L. Women and Gender in Science and Technology (Routledge, 2014).

  47. 47.

    Bose, D., Segui-Gomez, M. & Crandall, J. R. Vulnerability of female drivers involved in motor vehicle crashes: an analysis of US population at risk. Am. J. Public Health 101, 2368–2373 (2011).

  48. 48.

    Linder, A., Holmqvist, K. & Svensson, M. Y. Average male and female virtual dummy model (BioRID and EvaRID) simulations with two seat concepts in the Euro NCAP low severity rear impact test configuration. Accid. Anal. Prev. 114, 62–70 (2018).

  49. 49.

    Linder, A. & Svedberg, W. Review of average sized male and female occupant models in European regulatory safety assessment tests and European laws: gaps and bridging suggestions. Accid. Anal. Prev. 127, 156–162 (2019).

  50. 50.

    Falys, C. G., Schutkowski, H. & Weston, D. A. The distal humerus—a blind test of Rogers’ sexing technique using a documented skeletal collection. J. Forensic Sci. 50, JFS2005171 (2005).

  51. 51.

    Conley, S., Rosenberg, A. & Crowninshield, R. The female knee: anatomic variations. J. Am. Acad. Orthop. Surg. 15, S31–S36 (2007).

  52. 52.

    Zou, J. & Schiebinger, L. AI can be sexist and racist — it’s time to make it fair. Nature 559, 324–326 (2018).

  53. 53.

    Prates, M., Avelar, P. & Lamb, L. Assessing gender bias in machine translation—a case study with Google translate. Neural Comput. Appl. https://doi.org/10.1007/s00521-019-04144-6 (2019).

  54. 54.

    Zhao, J., Wang, T., Yatskar, M., Ordonez, V. & Chang, K. W. Men also like shopping: reducing gender bias amplification using corpus-level constraints. In Proc. 2017 Conference on Empirical Methods in Natural Language Processing (eds Palmer, M. et al.) 2979–2989 (ACL, 2017).

  55. 55.

    Corbett-Davies, S. & Goel, S. The measure and mismeasure of fairness: a critical review of fair machine learning. Preprint at https://arxiv.org/abs/1808.00023 (2018).

  56. 56.

    Dwork, C., Hardt, M., Pitassi, T., Reingold, O. & Zemel, R. Fairness through awareness. In Proc. 3rd Innovations in Theoretical Computer Science Conference 214–226 (ACM, 2012). This paper develops a mathematical framework to study the fairness notion that similar individuals should be treated similarly by algorithms.

  57. 57.

    Zemel, R., Wu, Y., Swersky, K., Pitassi, T. & Dwork, C. Learning fair representations. Proc. Mach. Learn. Res. 28, 325–333 (2013).

  58. 58.

    Barocas, S. & Selbst, A. D. Big data’s disparate impact. Calif. Law Rev. 104, 671–732 (2016). This paper studies what it means for algorithms to create disparate impact and to discriminate through the lens of American antidiscrimination law, and discusses the legal challenges involved.

  59. 59.

    Gebru, T. et al. Datasheets for datasets. Preprint at https://arxiv.org/abs/1803.09010 (2018).

  60. 60.

    Holland, S., Hosny, A., Newman, S., Joseph, J. & Chmielinski, K. The dataset nutrition label: a framework to drive higher data quality standards. Preprint at https://arxiv.org/abs/1805.03677 (2018).

  61. 61.

    Bender, E. M. & Friedman, B. Data statements for NLP: toward mitigating system bias and enabling better science. Preprint at https://openreview.net/forum?id=By4oPeX9f (2018).

  62. 62.

    Kusner, M., Loftus, J., Russell, C. & Silva, R. Counterfactual fairness. Adv. Neural Inf. Process. Syst. 30, 4066–4076 (2017).

  63. 63.

    Datta, A., Tschantz, M. C. & Datta, A. Automated experiments on ad privacy settings. Proc. Privacy Enhancing Technol. 2015, 92–112 (2015).

  64. 64.

    Bolukbasi, T., Chang, K. W., Zou, J., Saligrama, V. & Kalai, A. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. Adv. Neural Inf. Process. Syst. 29, 4349–4357 (2016).

  65. 65.

    Maas, A. L. et al. Learning word vectors for sentiment analysis. In Proc. 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (eds Matsumoto, Y. & Mihalcea, R.) 142–150 (ACL, 2011).

  66. 66.

    Zou, W. Y., Socher, R., Cer, D. & Manning, C. D. Bilingual word embeddings for phrase-based machine translation. In Proc. 2013 Conference on Empirical Methods in Natural Language Processing (eds Yarowsky, D. et al.) 1393–1398 (ACL, 2013).

  67. 67.

    Nie, A. et al. DeepTag: inferring diagnoses from veterinary clinical notes. NPJ Digit. Med. 1, 60 (2018).

  68. 68.

    Hébert-Johnson, U., Kim, M. P., Reingold, O. & Rothblum, G. N. Multicalibration: calibration for the (computationally-identifiable) masses. Proc. Mach. Learn. Res. 80, 1939–1948 (2018).

  69. 69.

    Kearns, M., Neel, S., Roth, A. & Wu, Z. S. Preventing fairness gerrymandering: auditing and learning for subgroup fairness. Proc. Mach. Learn. Res. 80, 2564–2572 (2018).

  70. 70.

    Kim, M. P., Ghorbani, A. & Zou, J. Multiaccuracy: black-box post-processing for fairness in classification. Preprint at https://arxiv.org/abs/1805.12317 (2018).

  71. 71.

    Doshi-Velez, F. & Kim, B. Towards a rigorous science of interpretable machine learning. Preprint at https://arxiv.org/abs/1702.08608 (2017).

  72. 72.

    West, S. M., Whittaker, M. & Crawford, K. Discriminating systems: gender, race and power in AI. AI Now Institute https://ainowinstitute.org/discriminatingsystems.html (2019).

  73. 73.

    Wang, Y. & Young, J. E. Beyond pink and blue: gendered attitudes towards robots in society. In Proc. 2nd Conference on Gender and IT Appropriation 49–54 (European Society for Socially Embedded Technologies, 2014).

  74. 74.

    Fiske, S. T. in The Handbook of Social Psychology (eds Gilbert, D. T. et al.) 357–411 (McGraw-Hill, 1998).

  75. 75.

    Epley, N., Waytz, A. & Cacioppo, J. T. On seeing human: a three-factor theory of anthropomorphism. Psychol. Rev. 114, 864–886 (2007). This paper presents a psychological model of anthropomorphism, specifying three factors that elicit anthropomorphic inferences about nonhuman entities.

  76. 76.

    von Zitzewitz, J., Boesch, P. M., Wolf, P. & Riener, R. Quantifying the human likeness of a humanoid robot. Int. J. Soc. Robot. 5, 263–276 (2013).

  77. 77.

    Lemaignan, S., Fink, J., Dillenbourg, P. & Braboszcz, C. The cognitive correlates of anthropomorphism. In 2014 Human-Robot Interaction Conference, Workshop on “HRI: A Bridge between Robotics and Neuroscience” (2014).

  78. 78.

    Nass, C. & Moon, Y. Machines and mindlessness: social responses to computers. J. Soc. Issues 56, 81–103 (2000).

  79. 79.

    Gulz, A. & Haake, M. in Gender Issues in Learning and Working with Information Technology: Social Constructs and Cultural Contexts (eds Goodman, S. et al.) 113–132 (IGI Global, 2010).

  80. 80.

    Krämer, N. C. et al. Closing the gender gap in STEM with friendly male instructors? On the effects of rapport behavior and gender of a virtual agent in an instructional interaction. Comput. Educ. 99, 1–13 (2016).

  81. 81.

    Baylor, A. L. The design of motivational agents and avatars. Educ. Technol. Res. Dev. 59, 291–300 (2011).

  82. 82.

    Arroyo, I., Woolf, B. P., Royer, J. M. & Tai, M. Affective gendered learning companions. In Proc. 2009 Conference on Artificial Intelligence in Education: Building Learning Systems that Care: From Knowledge Representation to Affective Modelling (eds Dimitrova, V. et al.) 41–48 (IOS Press, 2009).

  83. 83.

    Baylor, A. L. Promoting motivation with virtual agents and avatars: role of visual presence and appearance. Phil. Trans. R. Soc. B 364, 3559–3565 (2009).

  84. 84.

    McDonnell, M. & Baxter, D. Chatbots and gender stereotyping. Interact. Comput. 31, 116–121 (2019).

  85. 85.

    Alesich, S. & Rigby, M. Gendered robots: implications for our humanoid future. IEEE Technol. Soc. Mag. 36, 50–59 (2017).

  86. 86.

    Søraa, R. A. Mechanical genders: how do humans gender robots? Gend. Technol. Dev. 21, 99–115 (2017).

  87. 87.

    Kraus, M., Kraus, J., Baumann, M. & Minker, W. Effects of gender stereotypes on trust and likability in spoken human–robot interaction. In Proc. 11th International Conference on Language Resources and Evaluation (eds Calzolari, N. et al.) 112–118 (European Language Resources Association, 2018).

  88. 88.

    Crowell, C. R., Scheutz, M., Schermerhorn, P. & Villano, M. Gendered voice and robot entities: perceptions and reactions of male and female subjects. In Proc. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems 3735–3741 (IEEE, 2009).

  89. 89.

    Alexander, E., Bank, C., Yang, J. J., Hayes, B. & Scassellati, B. Asking for help from a gendered robot. In Proc. 36th Annual Meeting of the Cognitive Science Society 2333–2338 (Curran Associates, 2014).

  90. 90.

    Kuchenbrandt, D., Häring, M., Eichberg, J., Eyssel, F. & André, E. Keep an eye on the task! How gender typicality of tasks influence human–robot interactions. Int. J. Soc. Robot. 6, 417–427 (2014).

  91. 91.

    Reich-Stiebert, N. & Eyssel, F. (Ir)relevance of gender? On the influence of gender stereotypes on learning with a robot. In Proc. 2017 ACM/IEEE International Conference on Human–Robot Interaction (eds Mutlu, B. & Tscheligi, M.) 166–176 (ACM, 2017).

  92. 92.

    Tay, B., Jung, Y. & Park, T. When stereotypes meet robots: the double-edge sword of robot gender and personality in human–robot interaction. Comput. Human Behav. 38, 75–84 (2014).

  93. 93.

    Jung, E. H., Waddell, T. F. & Sundar, S. S. Feminizing robots: user responses to gender cues on robot body and screen. In Proc. 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems 3107–3113 (ACM, 2016).

  94. 94.

    Powers, A. et al. Eliciting information from people with a gendered humanoid robot. In Proc. 2005 IEEE International Workshop on Robots and Human Interactive Communication 158–163 (IEEE, 2005).

  95. 95.

    Eyssel, F. & Hegel, F. (S)he’s got the look: gender stereotyping of robots. J. Appl. Soc. Psychol. 42, 2213–2230 (2012).

  96. 96.

    Siegel, M., Breazeal, C. & Norton, M. I. Persuasive robotics: the influence of robot gender on human behavior. In Proc. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems 2563–2568 (IEEE, 2009).

  97. 97.

    Eyssel, F., Kuchenbrandt, D., Hegel, F. & de Ruiter, L. Activating elicited agent knowledge: how robot and user features shape the perception of social robots. In Proc. 21st IEEE international Symposium on Robot and Human Interactive Communication 851–857 (IEEE, 2012).

  98. 98.

    Kittmann, R. et al. Let me introduce myself: I am Care-O-bot 4, a gentleman robot. In Proc. Mensch und Computer 2015 223–232 (De Gruyter Oldenbourg, 2015).

  99. 99.

    Strait, M. K., Aguillon, C., Contreras, V. & Garcia, N. The public’s perception of humanlike robots: online social commentary reflects an appearance-based uncanny valley, a general fear of a “Technology Takeover”, and the unabashed sexualization of female-gendered robots. In 26th IEEE International Symposium on Robot and Human Interactive Communication 1418–1423 (IEEE, 2017).

  100. 100.

    Loideain, N. N. & Adams, R. From Alexa to Siri and the GDPR: the gendering of virtual personal assistants and the role of EU data protection law. King’s College London Dickson Poon School of Law Legal Studies Research Paper Series https://doi.org/10.2139/ssrn.3281807 (King’s College London, 2018).

  101. 101.

    West, M., Kraut, R. & Chew, H. E. I
    ’d Blush If I Could: Closing Gender Divides in Digital Skills through Education https://unesdoc.unesco.org/ark:/48223/pf0000367416 (EQUALS/UNESCO, 2019).

  102. 102.

    Meet, Q. The First Genderless Voice https://www.genderlessvoice.com/ (2019).

  103. 103.

    Nielsen, M. W., Bloch, C. W. & Schiebinger, L. Making gender diversity work for scientific discovery and innovation. Nat. Hum. Behav. 2, 726–734 (2018).

  104. 104.

    European Commission. H2020 Expert Group to Update and Expand “Gendered Innovations/Innovation through Gender” http://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupDetail&groupID=3601&NewSearch=1&NewSearch=1 (2019).

  105. 105.

    Lorenz, C. et al. Nanosized aerosols from consumer sprays: experimental analysis and exposure modeling for four commercial products. J. Nanopart. Res. 13, 3377–3391 (2011).

  106. 106.

    Mauvais-Jarvis, F., Arnold, A. P. & Reue, K. A guide for the design of pre-clinical studies on sex differences in metabolism. Cell Metab. 25, 1216–1230 (2017).

  107. 107.

    Hines, A. et al. Comparison of histological, genetic, metabolomics, and lipid-based methods for sex determination in marine mussels. Anal. Biochem. 369, 175–186 (2007).

  108. 108.

    Ellis, R. P. et al. 1H NMR metabolomics reveals contrasting response by male and female mussels exposed to reduced seawater pH, increased temperature, and a pathogen. Environ. Sci. Technol. 48, 7044–7052 (2014).

  109. 109.

    Naqvi, S. et al. Conservation, acquisition, and functional impact of sex-biased gene expression in mammals. Science 365, eaaw7317 (2019).

  110. 110.

    Clayton, J. A. Studying both sexes: a guiding principle for biomedicine. FASEB J. 30, 519–524 (2016).

  111. 111.

    Bivens, R. The gender binary will not be deprogrammed: ten years of coding gender on Facebook. New Media Soc. 19, 880–898 (2017).

  112. 112.

    Pelletier, R., Ditto, B. & Pilote, L. A composite measure of gender and its association with risk factors in patients with premature acute coronary syndrome. Psychosom. Med. 77, 517–526 (2015).

  113. 113.

    Flores, A. R., Herman, J. L., Gates, G. G. & Brown, T. N. T. How Many Adults Identify as Transgender in the United States.https://williamsinstitute.law.ucla.edu/research/how-many-adults-identify-as-transgender-in-the-united-states/ (The Williams Institute, 2016).

  114. 114.

    Lamm, M. S., Liu, H., Gemmell, N. J. & Godwin, J. R. The need for speed: neuroendocrine regulation of socially-controlled sex change. Integr. Comp. Biol. 55, 307–322 (2015).

  115. 115.

    Rice, C., Harrison, E. & Friedman, M. Doing justice to intersectionality in research. Cult. Stud. Crit. Methodol. 19, 409–420 (2019).

  116. 116.

    Heise, L. et al. Gender inequality and restrictive gender norms: framing the challenges to health. Lancet 393, 2440–2454 (2019).

  117. 117.

    Johnson, J., Sharman, Z., Vissandjée, B. & Stewart, D. E. Does a change in health research funding policy related to the integration of sex and gender have an impact? PLoS ONE 9, e99900 (2014).

  118. 118.

    Duchesne, A., Tannenbaum, C. & Einstein, G. Funding agency mechanisms to increase sex and gender analysis. Lancet 389, 699 (2017).

  119. 119.

    Schiebinger, L., Leopold, S. S. & Miller, V. M. Editorial policies for sex and gender analysis. Lancet 388, 2841–2842 (2016).

  120. 120.

    Heidari, S., Babor, T. F., De Castro, P., Tort, S. & Curno, M. Sex and gender equity in research: rationale for the SAGER guidelines and recommended use. Res. Integr. Peer Rev. 1, 2 (2016).

  121. 121.

    Directorate-General for Research and Innovation. Interim Evaluation: Gender Equality as a Crosscutting Issue in Horizon 2020 (European Commission, 2017.)

  122. 122.

    Will, T. R. et al. Problems and progress regarding sex bias and omission in neuroscience research. eNeuro 4, ENEURO.0278-17.2017 (2017).

  123. 123.

    Ludwig, S. et al. A successful strategy to integrate sex and gender medicine into a newly developed medical curriculum. J. Womens Health 24, 996–1005 (2015).

  124. 124.

    World Health Organization. Gender Mainstreaming for Health Managers: A Practical Approach https://www.who.int/gender-equity-rights/knowledge/health_managers_guide/en (2011).

  125. 125.

    Canadian Institutes of Health Research. Online Training Modules: Integrating Sex & Gender in Health Research http://www.cihr-irsc.gc.ca/e/49347.html (2017).

  126. 126.

    Arboleda, V. A., Sandberg, D. E. & Vilain, E. DSDs: genetics, underlying pathologies and psychosexual differentiation. Nat. Rev. Endocrinol. 10, 603–615 (2014).

  127. 127.

    Hughes, I. A., Houk, C., Ahmed, S. F. & Lee, P. A. Consensus statement on management of intersex disorders. J. Pediatr. Urol. 2, 148–162 (2006).

  128. 128.

    Jarne, P. & Auld, J. R. Animals mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution 60, 1816–1824 (2006).

  129. 129.

    Schiebinger, L. et al. Gender http://genderedinnovations.stanford.edu/terms/gender.html (2011–2019).

  130. 130.

    Boerner, K. E. et al. Conceptual complexity of gender and its relevance to pain. Pain 159, 2137–2141 (2018).

Download references

Acknowledgements

We thank H. F. LeBlanc for her assistance. R.E. acknowledges financial support from a NERC Industrial Innovation Fellowship (NE/R013241/1). J.Z. is supported by a Chan-Zuckerberg Investigator Award and NIH P30AG059307. The views expressed do not necessarily reflect those of the Canadian Institutes of Health Research or the Canadian Government.

Author information

Author notes

  1. These authors contributed equally: Cara Tannenbaum, Robert P. Ellis, Friederike Eyssel, James Zou

Affiliations

  1. Institute of Gender and Health, Canadian Institutes of Health Research, Université de Montréal, Montreal, Quebec, Canada

    • Cara Tannenbaum
  2. College of Life and Environmental Sciences, University of Exeter, Exeter, UK

    • Robert P. Ellis
  3. Center of Excellence Cognitive Interaction Technology, Department of Psychology, Universität Bielefeld, Bielefeld, Germany

    • Friederike Eyssel
  4. Biomedical Data Science, Stanford University, Stanford, CA, USA

    • James Zou
  5. Chan-Zuckerberg Biohub, San Francisco, CA, USA

    • James Zou
  6. History of Science, Gendered Innovations in Science, Health & Medicine, Engineering and Environment, Stanford University, Stanford, CA, USA

    • Londa Schiebinger

Authors

  1. Search for Cara Tannenbaum in:

  2. Search for Robert P. Ellis in:

  3. Search for Friederike Eyssel in:

  4. Search for James Zou in:

  5. Search for Londa Schiebinger in:

Contributions

L.S. conceptualized the paper and invited R.E., F.E., C.T. and J.Z. to collaborate. L.S. and C.T. structured and drafted the article, R.E. wrote the marine science section, F.E. wrote the social robots section, L.S. wrote the introductory and policy sections, C.T. wrote the health and medicine sections and J.Z. wrote the machine-learning section. All authors commented on and revised the paper. R.E. conceived and developed Fig. 1, C.T. conceived and developed Figs. 2 and 3, and contributed to Fig. 1, L.S. contributed to Fig. 3 and developed Fig. 4.

Corresponding author

Correspondence to
Londa Schiebinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature thanks Simon Beggs, Cynthia Breazeal, Jayne Danska, Reshma Jagsi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Supplementary information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tannenbaum, C., Ellis, R.P., Eyssel, F. et al. Sex and gender analysis improves science and engineering.
Nature 575, 137–146 (2019) doi:10.1038/s41586-019-1657-6

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Read More

Leave a Comment